Jump to content
Abdurrahman

Matematik Soruları Paylaşalım

Recommended Posts

Meğer forumun bana verdiği resim kontenjanım (5 mega baytlık) dolmuş ve hatta sınırı aşmışım. Anladığım kadarıyla bu nedenle bana resim yükleyemiyorum. Ben de yazı ile ifade edeyim.

..

Bir ABC dar açısı veriliyor ve D bu açı dışında buluna bir noktadır. BA ve BC bu açının kollarıdır.

D'den geçen bir doğru açının kollarını E ve F noktalrında keserek bir BEF üçgeni oluşturuyor.

BEF üçgeninin çevre uzunluğu verilen bir S değerinde olması gerekiyor.

D noktasından geçen doğruyu nasıl çizmemiz gerekir?

 

Sevgiler

 

İletiyi paylaş


Link to post
Sitelerde Paylaş
On 20.04.2019 at 13:37, DreiMalAli yazdı:

Meğer forumun bana verdiği resim kontenjanım (5 mega baytlık) dolmuş ve hatta sınırı aşmışım. Anladığım kadarıyla bu nedenle bana resim yükleyemiyorum. Ben de yazı ile ifade edeyim.

..

Bir ABC dar açısı veriliyor ve D bu açı dışında buluna bir noktadır. BA ve BC bu açının kollarıdır.

D'den geçen bir doğru açının kollarını E ve F noktalrında keserek bir BEF üçgeni oluşturuyor.

BEF üçgeninin çevre uzunluğu verilen bir S değerinde olması gerekiyor.

D noktasından geçen doğruyu nasıl çizmemiz gerekir?

 

Sevgiler

 

Çok bilinmeyen var.

Birkaç tane sayı ver.

 üçgenin ucu zaten B de E ve F  kesişim noktalarından birini D yaparız olur biter.:)

 

İletiyi paylaş


Link to post
Sitelerde Paylaş
11 saat önce, priest of nature yazdı:

Çok bilinmeyen var.

Birkaç tane sayı ver.

 üçgenin ucu zaten B de E ve F  kesişim noktalarından birini D yaparız olur biter.:)

 

 

:D

Bence sayısal değerlere gerek yok ama ille de sayı vermek istiyorsan, en sevdiğin sayılardan kendin bir kaç tane seç. Ben kabul ederim, geçerli sayarım.

 

İp-ucu: Açının içine, açının kollarına teğet olan bir daire çiz ve tekrar düşün.

 

Sevgiler

tarihinde DreiMalAli tarafından düzenlendi

İletiyi paylaş


Link to post
Sitelerde Paylaş
On 20.04.2019 at 13:37, DreiMalAli yazdı:

Meğer forumun bana verdiği resim kontenjanım (5 mega baytlık) dolmuş ve hatta sınırı aşmışım. Anladığım kadarıyla bu nedenle bana resim yükleyemiyorum. Ben de yazı ile ifade edeyim.

..

Bir ABC dar açısı veriliyor ve D bu açı dışında buluna bir noktadır. BA ve BC bu açının kollarıdır.

D'den geçen bir doğru açının kollarını E ve F noktalrında keserek bir BEF üçgeni oluşturuyor.

BEF üçgeninin çevre uzunluğu verilen bir S değerinde olması gerekiyor.

D noktasından geçen doğruyu nasıl çizmemiz gerekir?

 

Sevgiler

 

Artık kotanı arttırdık DreiMalAli :) Resmi bekliyoruz. Bir soru da ben sorayım eğer sorulmadıysa.

İki matematikçi eski bir arkadaşlarının evine gider. Arkadaşlarının 2 çocuğu vardır. Yaşlarını sorarlar. Çocukların annesi de bir kağıda yaşların toplamını bir kağıda, çarpımını bir kağıda yazar ve kağıtları matematikçilere verir. Yani birinci matematikçi yaşların toplamını, ikinci ise çarpımını biliyor ve birbirlerine söylemiyorlar ellerindekini.

İkisi de "Bu bilgi yeterli değil" diyor. Sonra çocuğun annesi "Bir daha düşünün" diyor ve elinde çarpım olan matematikçi "Haa, buldum." diyor.

Bu nasıl oluyor? Oluyorsa ikinci matematikçinin elindeki sayı ne?

İletiyi paylaş


Link to post
Sitelerde Paylaş

Kota için teşekkürler sevgili Bir Buçuk.

Senin soruna ben cevap vermiyeyim. Değişik sürümü ile olsa da soruyu tanıyorum. Cevabını sayısal olarak şimdi bilmesem de, nasıl bulacağımı biliyorum.

Benim bildiğim sürüm Cehennemde geçiyor. Zebani bir matematikçiye iki sayının toplamını diğerine ise çarpımını veriyor...
Bilirlerse ödüllerinin ne olacağı malum! :D

 

Sevgiler

 

 

İletiyi paylaş


Link to post
Sitelerde Paylaş
On 20.04.2019 at 12:37, DreiMalAli yazdı:

Meğer forumun bana verdiği resim kontenjanım (5 mega baytlık) dolmuş ve hatta sınırı aşmışım. Anladığım kadarıyla bu nedenle bana resim yükleyemiyorum. Ben de yazı ile ifade edeyim.

..

Bir ABC dar açısı veriliyor ve D bu açı dışında buluna bir noktadır. BA ve BC bu açının kollarıdır.

D'den geçen bir doğru açının kollarını E ve F noktalrında keserek bir BEF üçgeni oluşturuyor.

BEF üçgeninin çevre uzunluğu verilen bir S değerinde olması gerekiyor.

D noktasından geçen doğruyu nasıl çizmemiz gerekir?

 

Sevgiler

 

 

1912627603_WnkelundgegebenerDreecksUmfang.png.97103ed7dda39c9756cce3b7f37eed53.png

 

ABC açısının BA ve BC kenarlarına teğet herhangi bir daire çiziyoruz. D noktasından bu daireye teğet çiziyoruz.

 

BEF üçgeninin çevresi

S = BE + EF + BF = BE + (EH + FH) + BF = (BE + EH) + (BF + FH)  olur.

 

Teğet olduklarından dolayı

EH = EG

ve

FH = FI'dir

Yukarda yerine koyarsak

S = (BE + EG) + (BF + FI) = BG + BI

olur.

Ve yine teğet oldukları için

BG = BI'dir

Böylece

S = BG + BG = 2*BG

ve buradan da

BG = S/2

buluruz.

 

Yani...

BEF üçgeninin çevresinin S olması için

- ABC açısının BA kolunda BG = S/2 olacak bir G noktası alıyoruz.

- Açının içerisinden G noktasından geçen ve açının BC koluna teğet bir daire çiziyoruz.

- D noktasından bu daireye bir DH teğeti çiziyoruz. Bu teğet açının kollarını E ve F noktalrında kesiyor.

Elde ettiğimiz BEF üçgeninin çevresi S olur.

 

Sevgiler

 

İletiyi paylaş


Link to post
Sitelerde Paylaş

İti an, çomağı hazırla!
Ya da
Bir yerde sonsuz görürsen, süprizlere de hazırlıklı ol! :)
..

y = 1/x fonksiyonunun grafiği şöyle bir şey:

1908139482_1durchx2dimensinal.png.4977c35b7a8134f4f0a12152c785f5ad.png

Bu grafiği x ekseni etrafında dönderirsek, aşağıdaki şekildeki gibi 3 boyutlu, içi boş bir cisim elde ederiz:

494102866_1durchx3dimensinal.thumb.png.3eae094a87fb949cb6117df0e50753fb.png

Her iki grafiği x = 1'den x = 10'a değeine kadar çizdim.

Bu cismi x = 1'den x ---> sonsuza kadar çizersek, elde edeceğimiz cismin

- hacmı ne kaadar olur?
- iç yüzeyi ne kadar olur?

 

Sevgiler

 

 

İletiyi paylaş


Link to post
Sitelerde Paylaş

Bir futbol turnuvası düzenleniyor. Turnuvaya 2048 takım katılıyor. Eleme usulü, ikili eşleşerek kazanan belirleniyor. 

Toplam kaç maç yapılmıştır?

Not: Cevap “şık” olmalı :) 

İletiyi paylaş


Link to post
Sitelerde Paylaş
On 28.04.2019 at 21:55, Bir Buçuk yazdı:

Bir futbol turnuvası düzenleniyor. Turnuvaya 2048 takım katılıyor. Eleme usulü, ikili eşleşerek kazanan belirleniyor. 

Toplam kaç maç yapılmıştır?

Not: Cevap “şık” olmalı :)

2 takımda 1 eşleşme

2 üzeri 2 takımda 4

2 üzeri 3 te 1

... 

.. 

 

2 üzeri 11 de ise 4 üzeri 10 eşleşme yapar

 

İletiyi paylaş


Link to post
Sitelerde Paylaş
21 saat önce, CinleriGorenAdam yazdı:

2 takımda 1 eşleşme

2 üzeri 2 takımda 4

2 üzeri 3 te 1

... 

.. 

 

2 üzeri 11 de ise 4 üzeri 10 eşleşme yapar

 

 

Soruda " Eleme usulü, ikili eşleşerek kazanan belirleniyor " diyor.

Bundan benim anladığım: "Maçı kaybeden takım bir daha eşleşmeye katılmıyor" demek isteniyor.

 

Sevgiler

İletiyi paylaş


Link to post
Sitelerde Paylaş
5 saat önce, CinleriGorenAdam yazdı:

2 takım = 2 üzeri 1 - 1 maç

2 üzeri 2 takım = 2 üzeri 2 - 1 maç

... 

.. 

2 üzeri 11 takım = 2 üzeri 11 - 1 maç

 

=2047

 

Şık mevzusunu anlamadım hala. 

 

Bence yeteri kadar şık olmuş.

Belki
2048 - 1

veya

211 - 1

yazsaydın daha mı şık olurdu acaba? :)

 

Peki takım sayısı sorudaki gibi 2'nin üsleri olmasaydı, bunun yerine takım sayısı N (N herhangi bir pozitif tamsayı) olsaydı, kaç maç oynamak gerekirdi?

 

Sevgiler

İletiyi paylaş


Link to post
Sitelerde Paylaş

Bu sorunun birçok çözümü var. En “şık olmayan” ve kötü çözüm, 512’den başlayıp, her adımda ikiye böle böle toplamaktır. Daha şık çözüm, seri toplamı formülüyle veya CinleriGorenAdam’ın çözümüdür. Bahsettiğim daha da şık çözüm ise, sayılar ve kümelerle ilgili olup, cevap söylediğinde basitliğine şaşırılacak, hatta rahatça bulunabilir gibi gelecek bir çözüm.

 

 

On 28.04.2019 at 17:56, DreiMalAli yazdı:

İti an, çomağı hazırla!
Ya da
Bir yerde sonsuz görürsen, süprizlere de hazırlıklı ol! :)
..

y = 1/x fonksiyonunun grafiği şöyle bir şey:

1908139482_1durchx2dimensinal.png.4977c35b7a8134f4f0a12152c785f5ad.png

Bu grafiği x ekseni etrafında dönderirsek, aşağıdaki şekildeki gibi 3 boyutlu, içi boş bir cisim elde ederiz:

494102866_1durchx3dimensinal.thumb.png.3eae094a87fb949cb6117df0e50753fb.png

Her iki grafiği x = 1'den x = 10'a değeine kadar çizdim.

Bu cismi x = 1'den x ---> sonsuza kadar çizersek, elde edeceğimiz cismin

- hacmı ne kaadar olur?
- iç yüzeyi ne kadar olur?

 

Sevgiler

 

 

Resimler yaşadığımız teknik sorundan dolayı gitmiş. Ancak yazıdan da anlaşılabiliyor.

1/x’in integrali lnx’tir. Lnx’in limit sonsuzdaki değeri sonsuzdur. Yani fonksiyon sonsuza giderken, alan da sonsuza gider. Bu yüzey alanı değil, fonksiyonun altındaki alan.

Çevrilmiş cisimde başlangıçtaki kesit alanı, PI * 1 * 1 olup,yeni fonksiyonun her yerinde geçerlidir. Daha doğrusu, fonksiyonun x noktasındaki kesit alanı PI*(1/x)*(1/x) = PI*x^-2’dir. Bunun integrali ise  -PI * (1/x) olup, sonsuzda 0’a, 0’daysa -sonsuza gider. Başlangıç noktamız 1 idi. Yani integralin sonsuzdaki değerinden 1’deki değerini çıkarırsak hacmi buluruz, ki o da PI eder. 

 

İletiyi paylaş


Link to post
Sitelerde Paylaş
4 saat önce, DreiMalAli yazdı:

 

Peki takım sayısı sorudaki gibi 2'nin üsleri olmasaydı, bunun yerine takım sayısı N (N herhangi bir pozitif tamsayı) olsaydı, kaç maç oynamak gerekirdi?

 

 

Çift sayı olup 2 nin üsleri olmasa bile işlem çok karmaşıklaşıyor. Ve sadece çift köklü bir sayı olmadan çıkıp, puanlamayı yapmak kafa karıştırıcı hale geliyor.

 

6 takım diye düşündüm.

 

İlk turları kazanan 3 takım olur.

 

Sonra bu 3 takım kendi aralarında şampiyon olmak için yarışırlar, heralde bu sefer skor sistemi devreye girmek zorunda olur, çünkü sadece kazanmak ya da kazanmamak ile gidilirse beraberlik ortaya çıkar.

 

O yüzden ben bunun sağlıklı bir soru olduğunu zannetmiyorum.

İletiyi paylaş


Link to post
Sitelerde Paylaş
On 01.05.2019 at 23:39, Bir Buçuk yazdı:

Resimler yaşadığımız teknik sorundan dolayı gitmiş. Ancak yazıdan da anlaşılabiliyor.

1/x’in integrali lnx’tir. Lnx’in limit sonsuzdaki değeri sonsuzdur. Yani fonksiyon sonsuza giderken, alan da sonsuza gider. Bu yüzey alanı değil, fonksiyonun altındaki alan.

Çevrilmiş cisimde başlangıçtaki kesit alanı, PI * 1 * 1 olup,yeni fonksiyonun her yerinde geçerlidir. Daha doğrusu, fonksiyonun x noktasındaki kesit alanı PI*(1/x)*(1/x) = PI*x^-2’dir. Bunun integrali ise  -PI * (1/x) olup, sonsuzda 0’a, 0’daysa -sonsuza gider. Başlangıç noktamız 1 idi. Yani integralin sonsuzdaki değerinden 1’deki değerini çıkarırsak hacmi buluruz, ki o da PI eder. 

 

 

Sevgili Bir Buçuk.

Alıntı

Resimler yaşadığımız teknik sorundan dolayı gitmiş. Ancak yazıdan da anlaşılabiliyor.

Sağlık olsun!

..

Ben aslında yüzey alanını sormuştum. Biraz önce kendim de denedim ama integrali çözemedim (İhtiyarlık alametleri diyelim. :) ). Elimdeki matematik formülleri kitabına bakmak zorunda kaldım. Neyse...

Cismin hacmını sen zaten bulmuşsun:  Pi

Yüzeyi de ben vereyim: Sonsuz.

 

Asıl sormak istediğim soru bundan sonra geliyor! :D

İster matematiğin cilvesi diyelim, ister sonsuzluğun kerameti diyelim:

 

Bu cismin içini pi kadarlık bir sıvı boya ile doldurabiliyoruz.

Ama...

Bu cismin yüzeyini boyamak istersek, sonsuz miktarda boya gerekiyor!!!

 

... mu acaba?


Arkadaşım son-
Arkadaşım -suz
Arkadaşım sonsuuuz!

 

Sevgiler

 

Ek: Aslında bilinen bir paradoks sorusudur. İnternette "Gabriels Horn" ( = Cebrailin Borazanı) diye aratırsanız, bol bol site bulursunuz.

 

tarihinde DreiMalAli tarafından düzenlendi

İletiyi paylaş


Link to post
Sitelerde Paylaş
On 02.05.2019 at 00:06, CinleriGorenAdam yazdı:

 

Çift sayı olup 2 nin üsleri olmasa bile işlem çok karmaşıklaşıyor. Ve sadece çift köklü bir sayı olmadan çıkıp, puanlamayı yapmak kafa karıştırıcı hale geliyor.

 

6 takım diye düşündüm.

 

İlk turları kazanan 3 takım olur.

 

Sonra bu 3 takım kendi aralarında şampiyon olmak için yarışırlar, heralde bu sefer skor sistemi devreye girmek zorunda olur, çünkü sadece kazanmak ya da kazanmamak ile gidilirse beraberlik ortaya çıkar.

 

O yüzden ben bunun sağlıklı bir soru olduğunu zannetmiyorum.

 

Sevgili CinleriGorenAdam.

 

Eğer denemek istersen, "Olmayana Ergi metodu" ile gayet basit bir şekilde çözülüyor. Tek sayı, çift sayı diye uğraşmaya gerek kalmıyor.

 

Sevgiler

İletiyi paylaş


Link to post
Sitelerde Paylaş
On 02.05.2019 at 07:46, Bir Buçuk yazdı:

Son 3 takımın ikisi kendi arasında oynar, biri maç yapmadan finale çıkar.

Eğer bahsettiğim şık çözüm bulunursa, bu sorunun cevabı da bulunur rahatça.

 

Sevgili Bir Buçuk.

 

Bir sorunun soruluş şekli, muhatabı belli bir yöne yönlendirebiliyor. Senin sorun da buna bir örnekti. Ben de bu "tuzağa" düştüm. Verilen sayı 2'nin üssü olduğu için hemen geometrik dizi ile başladım. Daha fazla da düşünmedim. Ta ki sen, "Şık Çözüm" diye üsteleyinceye kadar. :D

..

Benim aklıma gelen bir "şık" çözüm:

T tane takım var. ikişer-ikişer eşleşiyorlar ve oynuyorlar.

Her oyunda 1 takım (oyunu kaybeden takım) eleniyor.

Nihayetinde en sona tek 1 tane takım kalıyor: Şampiyon takım.

Diğerleri; yani T - 1 tane takım elenmiş oluyor.

Her oyunda 1 takım elendiğine göre, T - 1 tane takımın elenmesi için T - 1 oyun oynamış olması zorunludur.

..

Böyle basit çözümler neden aklıma hemen gelmez diye de kendime kızdım.

Senin şık çözümünü de merakla bekliyorum. :D

 

Sevgiler

İletiyi paylaş


Link to post
Sitelerde Paylaş

Tartışmaya katıl

You can post now and register later. If you have an account, sign in now to post with your account.

Misafir
Bu konuyu yanıtla

×   Yapıştırdığınız içerik biçimlendirme içeriyor.   Biçimlendirmeyi Temizle

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Yükleniyor ...

  • Konuyu Görüntüleyenler   0 kullanıcı

    Sayfayı görüntüleyen kayıtlı kullanıcı bulunmuyor.

×
×
  • Yeni Oluştur...